3.2.35 \(\int \frac {\sin ^2(e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [135]

3.2.35.1 Optimal result
3.2.35.2 Mathematica [C] (verified)
3.2.35.3 Rubi [A] (verified)
3.2.35.4 Maple [B] (verified)
3.2.35.5 Fricas [B] (verification not implemented)
3.2.35.6 Sympy [F]
3.2.35.7 Maxima [F]
3.2.35.8 Giac [F]
3.2.35.9 Mupad [F(-1)]

3.2.35.1 Optimal result

Integrand size = 25, antiderivative size = 134 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 (a-b)^{5/2} f}-\frac {\cos (e+f x) \sin (e+f x)}{2 (a-b) f \sqrt {a+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}} \]

output
1/2*(a+2*b)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/(a-b)^ 
(5/2)/f-1/2*cos(f*x+e)*sin(f*x+e)/(a-b)/f/(a+b*tan(f*x+e)^2)^(1/2)-3/2*b*t 
an(f*x+e)/(a-b)^2/f/(a+b*tan(f*x+e)^2)^(1/2)
 
3.2.35.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 4.36 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.10 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\left ((a-b) (a+5 b+(a-b) \cos (2 (e+f x)))-\sqrt {2} \left (a^2+a b-2 b^2\right ) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )+\sqrt {2} a (a+2 b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )\right ) \sec ^2(e+f x) \sin (2 (e+f x))}{4 \sqrt {2} (a-b)^3 f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

input
Integrate[Sin[e + f*x]^2/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
-1/4*(((a - b)*(a + 5*b + (a - b)*Cos[2*(e + f*x)]) - Sqrt[2]*(a^2 + a*b - 
 2*b^2)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Ellipt 
icF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqr 
t[2]], 1] + Sqrt[2]*a*(a + 2*b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*C 
sc[e + f*x]^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*C 
os[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])*Sec[e + f*x]^2*Sin[2*(e 
+ f*x)])/(Sqrt[2]*(a - b)^3*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[ 
e + f*x]^2])
 
3.2.35.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.06, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4146, 373, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^2}{\left (a+b \tan (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\int \frac {a-2 b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^{3/2}}d\tan (e+f x)}{2 (a-b)}-\frac {\tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\int \frac {a (a+2 b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a (a-b)}-\frac {3 b \tan (e+f x)}{(a-b) \sqrt {a+b \tan ^2(e+f x)}}}{2 (a-b)}-\frac {\tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {(a+2 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a-b}-\frac {3 b \tan (e+f x)}{(a-b) \sqrt {a+b \tan ^2(e+f x)}}}{2 (a-b)}-\frac {\tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {(a+2 b) \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}}{a-b}-\frac {3 b \tan (e+f x)}{(a-b) \sqrt {a+b \tan ^2(e+f x)}}}{2 (a-b)}-\frac {\tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {(a+2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{3/2}}-\frac {3 b \tan (e+f x)}{(a-b) \sqrt {a+b \tan ^2(e+f x)}}}{2 (a-b)}-\frac {\tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

input
Int[Sin[e + f*x]^2/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-1/2*Tan[e + f*x]/((a - b)*(1 + Tan[e + f*x]^2)*Sqrt[a + b*Tan[e + f*x]^2 
]) + (((a + 2*b)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x] 
^2]])/(a - b)^(3/2) - (3*b*Tan[e + f*x])/((a - b)*Sqrt[a + b*Tan[e + f*x]^ 
2]))/(2*(a - b)))/f
 

3.2.35.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
3.2.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1596\) vs. \(2(118)=236\).

Time = 2.92 (sec) , antiderivative size = 1597, normalized size of antiderivative = 11.92

method result size
default \(\text {Expression too large to display}\) \(1597\)

input
int(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/f/(a-b)^2*(b^4*(a-b))^(1/2)/b^2*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b* 
tan(f*x+e)^2)^(1/2)*tan(f*x+e))-b*tan(f*x+e)/a/(a-b)/f/(a+b*tan(f*x+e)^2)^ 
(1/2)+1/f/b/(a-b)^3*(b^4*(a-b))^(1/2)*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/( 
b*(-cos(2*f*x+2*e)+1)^2*csc(2*f*x+2*e)^2+a)^(1/2)*(csc(2*f*x+2*e)-cot(2*f* 
x+2*e)))-1/2/f/(a-b)^2*a/(b*(-cos(2*f*x+2*e)+1)^2*csc(2*f*x+2*e)^2+a)^(1/2 
)/(1/(cos(2*f*x+2*e)^2*csc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2*f*x+2*e)^ 
2*b+b*csc(2*f*x+2*e)^2+a)*a*csc(2*f*x+2*e)^2*cos(2*f*x+2*e)^2-2/(cos(2*f*x 
+2*e)^2*csc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2*f*x+2*e)^2*b+b*csc(2*f*x 
+2*e)^2+a)*a*csc(2*f*x+2*e)^2*cos(2*f*x+2*e)+1/(cos(2*f*x+2*e)^2*csc(2*f*x 
+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2*f*x+2*e)^2*b+b*csc(2*f*x+2*e)^2+a)*a*csc( 
2*f*x+2*e)^2-b/(cos(2*f*x+2*e)^2*csc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2 
*f*x+2*e)^2*b+b*csc(2*f*x+2*e)^2+a)*csc(2*f*x+2*e)^2*cos(2*f*x+2*e)^2+2*b/ 
(cos(2*f*x+2*e)^2*csc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2*f*x+2*e)^2*b+b 
*csc(2*f*x+2*e)^2+a)*csc(2*f*x+2*e)^2*cos(2*f*x+2*e)-b/(cos(2*f*x+2*e)^2*c 
sc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*csc(2*f*x+2*e)^2*b+b*csc(2*f*x+2*e)^2+a 
)*csc(2*f*x+2*e)^2+1)*csc(2*f*x+2*e)+1/2/f/(a-b)^2*a/(b*(-cos(2*f*x+2*e)+1 
)^2*csc(2*f*x+2*e)^2+a)^(1/2)/(1/(cos(2*f*x+2*e)^2*csc(2*f*x+2*e)^2*b-2*co 
s(2*f*x+2*e)*csc(2*f*x+2*e)^2*b+b*csc(2*f*x+2*e)^2+a)*a*csc(2*f*x+2*e)^2*c 
os(2*f*x+2*e)^2-2/(cos(2*f*x+2*e)^2*csc(2*f*x+2*e)^2*b-2*cos(2*f*x+2*e)*cs 
c(2*f*x+2*e)^2*b+b*csc(2*f*x+2*e)^2+a)*a*csc(2*f*x+2*e)^2*cos(2*f*x+2*e...
 
3.2.35.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (118) = 236\).

Time = 3.78 (sec) , antiderivative size = 908, normalized size of antiderivative = 6.78 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {{\left ({\left (a^{2} + a b - 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + a b + 2 \, b^{2}\right )} \sqrt {-a + b} \log \left (128 \, {\left (a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - 5 \, a^{3} b + 9 \, a^{2} b^{2} - 7 \, a b^{3} + 2 \, b^{4}\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 34 \, a^{3} b + 77 \, a^{2} b^{2} - 72 \, a b^{3} + 24 \, b^{4}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 32 \, a^{3} b + 160 \, a^{2} b^{2} - 256 \, a b^{3} + 128 \, b^{4} - 32 \, {\left (a^{4} - 11 \, a^{3} b + 34 \, a^{2} b^{2} - 40 \, a b^{3} + 16 \, b^{4}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - 4 \, a^{2} b + 5 \, a b^{2} - 2 \, b^{3}\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 29 \, a^{2} b + 48 \, a b^{2} - 24 \, b^{3}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 10 \, a^{2} b + 24 \, a b^{2} - 16 \, b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a + b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) + 8 \, {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{3} + 3 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, {\left ({\left (a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - 3 \, a^{2} b^{2} + 3 \, a b^{3} - b^{4}\right )} f\right )}}, \frac {{\left ({\left (a^{2} + a b - 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + a b + 2 \, b^{2}\right )} \sqrt {a - b} \arctan \left (-\frac {{\left (8 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a - b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )^{4} - a^{2} b + 3 \, a b^{2} - 2 \, b^{3} - {\left (a^{3} - 6 \, a^{2} b + 9 \, a b^{2} - 4 \, b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \, {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{3} + 3 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{8 \, {\left ({\left (a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - 3 \, a^{2} b^{2} + 3 \, a b^{3} - b^{4}\right )} f\right )}}\right ] \]

input
integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/16*(((a^2 + a*b - 2*b^2)*cos(f*x + e)^2 + a*b + 2*b^2)*sqrt(-a + b)*lo 
g(128*(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^ 
4 - 5*a^3*b + 9*a^2*b^2 - 7*a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34 
*a^3*b + 77*a^2*b^2 - 72*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 - 32*a^3*b + 
 160*a^2*b^2 - 256*a*b^3 + 128*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40* 
a*b^3 + 16*b^4)*cos(f*x + e)^2 + 8*(16*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos 
(f*x + e)^7 - 24*(a^3 - 4*a^2*b + 5*a*b^2 - 2*b^3)*cos(f*x + e)^5 + 2*(5*a 
^3 - 29*a^2*b + 48*a*b^2 - 24*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a 
*b^2 - 16*b^3)*cos(f*x + e))*sqrt(-a + b)*sqrt(((a - b)*cos(f*x + e)^2 + b 
)/cos(f*x + e)^2)*sin(f*x + e)) + 8*((a^2 - 2*a*b + b^2)*cos(f*x + e)^3 + 
3*(a*b - b^2)*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e) 
^2)*sin(f*x + e))/((a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*f*cos(f*x + 
 e)^2 + (a^3*b - 3*a^2*b^2 + 3*a*b^3 - b^4)*f), 1/8*(((a^2 + a*b - 2*b^2)* 
cos(f*x + e)^2 + a*b + 2*b^2)*sqrt(a - b)*arctan(-1/4*(8*(a^2 - 2*a*b + b^ 
2)*cos(f*x + e)^5 - 8*(a^2 - 3*a*b + 2*b^2)*cos(f*x + e)^3 + (a^2 - 8*a*b 
+ 8*b^2)*cos(f*x + e))*sqrt(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f 
*x + e)^2)/((2*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^4 - a^2*b + 3* 
a*b^2 - 2*b^3 - (a^3 - 6*a^2*b + 9*a*b^2 - 4*b^3)*cos(f*x + e)^2)*sin(f*x 
+ e))) - 4*((a^2 - 2*a*b + b^2)*cos(f*x + e)^3 + 3*(a*b - b^2)*cos(f*x + e 
))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/((a^...
 
3.2.35.6 Sympy [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sin ^{2}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sin(f*x+e)**2/(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral(sin(e + f*x)**2/(a + b*tan(e + f*x)**2)**(3/2), x)
 
3.2.35.7 Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(sin(f*x + e)^2/(b*tan(f*x + e)^2 + a)^(3/2), x)
 
3.2.35.8 Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(sin(e + f*x)^2/(a + b*tan(e + f*x)^2)^(3/2),x)
 
output
int(sin(e + f*x)^2/(a + b*tan(e + f*x)^2)^(3/2), x)